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Abstract
We derive the exact modified London equation for the two-gap superconductor,
and compare it with its single-gap counterpart. We show that the vortices in the
two-gap superconductor are soft (or continuous) core vortices. In particular,
we discuss the topological structure of the finite-energy vortices (Abrikosov-
like vortices), and find that they can be viewed as the incarnation of the baby
skyrmion stretched in the third direction. Besides, we point out that the knot
soliton in the two-gap superconductor is the twisted Abrikosov-like vortex with
its two periodic ends connected smoothly. The relation between the magnetic
monopoles and the Abrikosov-like vortices is also discussed briefly.

PACS numbers: 74.20.De, 47.32.cd, 11.27.+d

As an outstanding instance of the condensed matter systems with several coexisting Bose
condensates, the two-gap superconductor (TGS) attracts wide interest, both theoretically and
experimentally [1]. The discovery of the mapping between a two-flavor Ginzburg–Landau
model and a version of the nonlinear O(3) σ -model reveals the topological essence of the
TGS [2]. Based on this mapping, many topological solitons in the TGS, including vortices,
knot solitons, magnetic monopoles, etc, have been studied [2–5]. In this paper, we derive the
exact modified London equation for the TGS, and compare it with its single-gap counterpart.
We find that the cores of vortices in the TGS are soft (or continuous). This is distinct from
the case in the single-gap superconductor (SGS), where the Abrikosov vortices have hard
(or singular) cores. In particular, we discuss the topological structure of the finite-energy
vortices (Abrikosov-like vortices), and find that they can be viewed as the incarnation of the
baby skyrmion stretched in the third direction. Besides, we point out that the knot soliton in
the TGS is the twisted Abrikosov-like vortex with its two periodic ends connected smoothly.
The relation between the magnetic monopoles and the Abrikosov-like vortices is also discussed
briefly.
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We start by reviewing the mapping between a two-flavor GL model and a version of
the nonlinear O(3) σ -model. A TGS is described by the two-flavor (denoted by α = 1, 2)
Ginzburg–Landau free-energy density [2, 3],

F = 1

2m1
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Then the original GL free-energy density (1) can be represented as [2, 3]
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. Then the potential term V (ρ, n3) determines the vacuum value of n3

to be cos θ0 ≡ [
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, where Nα = 〈|�α|2〉 = bα/cα . Furthermore, taking

account of the term ρ2Kn1, the vacuum value of n is determined to be n0 = (−sin θ0, 0, cos θ0).
The models (1) and (2) have four characteristic length scales: condensate coherence lengths
ξ1 and ξ2, magnetic field penetration length λ = 1

eρ
and the length scale associated with the

interband Josephson effect [3, 4]. For convenience, in the following discussion, we assume
that ξ1 and ξ2 have the same order of magnitude and define the system coherence length
ξ = max[ξ1, ξ2].

According to free-energy density (2), the magnetic field in the TGS is separated into two
parts: the contribution from C, which is equal to 1

4e
∇ ×C, and the self-induced magnetic field

B̃ ≡ 1
4e

εabcna∇nb × ∇nc, which is originated from the nontrivial electromagnetic interaction
between the two condensates [2]. At this point, we might also recall that the magnetic field
in the SGS is also separated into two parts: the contribution from the supercurrent, which is
the counterpart of the above-mentioned contribution from C, and the magnetic field with a
δ-function distribution, which, as we will show below, is the counterpart of the self-induced
magnetic field B̃. From the expression of B̃, we can see that this part of the magnetic field
has a continuous distribution instead of the singular distribution of its counterpart in the SGS.
Besides, the expression of B̃ has an obvious topological meaning, and therefore embodies the
topological feature of the system.

For investigating the magnetic-field distribution feature in the TGS, we need the modified
London equation for model (1) (or equivalently model (2)). For comparison with that in the
SGS, we will first review the derivation of the modified London equation for the SGS which
is usually written as [6]
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where λ is the London penetration depth, �0 = 2π
e

is the standard flux quantum,
and the line integral is taken along the kth vortex. During this review process, some
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corrections to equation (3) will be added. The supercurrent for the SGS is written as
J = − ie

2m
[�∗∇� − �∇�∗] − e2

m
|�|2A. Combining B = ∇ × A,∇ × ∇ × B = ∇ ×
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Using the φ-mapping method [7], we can write the right-hand side (RHS) of equation (4)
as − iπ

e
δ(�)∇�∗ × ∇�. Expanding the δ-function δ(�), we arrive at our modified London

equation for the SGS:
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where Wk is the flux-quantum number of the kth vortex and s is the line parameter. Equation (5)
is different than equation (4) mainly in the following aspects: (i) equation (5) can describe
the situation including the multi-vortex, (ii) the London penetration depth in equation (5) is a
variant and (iii) equation (5) includes an additional correction term, namely the third term in
the left-hand side of it. In spite of all these differences, equation (5) retains the main feature
of equation (3): excluding the contribution from the supercurrent J, the magnetic field has a
δ-function distribution described by the RHS of equation (5).

For the TGS, the supercurrent described in model (1) is written as J = − ie
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Here we note that the term including δ(�1) and its �2 counterpart vanish identically. This
shows that the singular part of the magnetic field, which is dominant in the SGS, is replaced
by the part of the magnetic field originated from the continuous interaction between the two
condensates. Furthermore, from the definition of n, equation (6) can be rewritten in the
following compact form:
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This expression is the exact modified London equation for the TGS. Comparing equation (8)
with equation (5), we find that the self-induced magnetic field B̃ is indeed the counterpart of
the singular magnetic field in the SGS.

Now we turn to the investigation of the topological structure of the finite-energy vortices
in model (1) (or equivalently model (2)). In [2], Babaev discussed various vortices in model
(1). Among them, only the vortex characterized by �(φ1 + φ2) ≡ ∮

dl · ∇(φ1 + φ2) = 4πm

and �γ ≡ ∮
dl · ∇γ = 0 (where we integrate over a closed curve around the vortex core) has

finite energy per unit length [3, 4]. Such a vortex is an analog of the ordinary Abrikosov vortex
in the SGS characterized by |�|2
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)
, because if both phases φ1,2 change by 2πm

around its core, the vortex will carry m quanta of magnetic flux [3]. In the following, we will
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refer to such vortices as Abrikosov-like vortices for short. In spite of the similarity between
the Abrikosov-like vortices and the ordinary Abrikosov vortices, they have very different
topological structures. To see this, let us note the following two points. First, as we have
said above, the self-induced magnetic-field distribution in the present system is continuous
instead of the singular distribution in the SGS. This implies that the vortices in the present
system are soft core vortices while the Abrikosov vortices are the hard core vortices. Second,
if we note that an Abrikosov vortex has a vanishing condensate at the center of its core, we
may think that the Abrikosov-like vortex has both vanishing condensates at the center of its
core. But this is not the case because at the points where both |�1| and |�2| vanish, n can
not be well defined. Actually, around such a point, n has a hedgehog-like distribution, which
makes this point corresponding to a magnetic monopole. Such monopoles in the TGS have
been noted by Jiang [5]. We will briefly discuss the relation between these monopoles and the
Abrikosov-like vortices at the end of this paper.

To be specific, let us consider an Abrikosov-like vortex located along the z-axis. Because
the vortex has finite energy per unit length, n must tend to its vacuum value when the distance
away from the center of the vortex core extends to ξ . This boundary condition compactifies the
xy-plane into S2 and makes n a map: S2 �→ S2. At this point, we can see that the topological
stability of the Abrikosov-like vortex originated from π2(S

2) = Z rather than the Abelian
topology π1(S

1) = Z, which guarantees the topological stability of the ordinary Abrikosov
vortex. In 2D, a topological soliton from π2(S

2) = Z is known as a baby skyrmion. So we
can say that an Abrikosov-like vortex is an incarnation of a baby skyrmion stretched in the
third direction. In general case, we have N1N2 	= 0 or cos θ0 	= ±1. Then the curves formed
by the zeros of the two condensates are located in the soft core of the vortex, but not at the
center which corresponds to −n0. If N2 → 0, or cos θ0 → 1, the curves formed by the zeros
of �2 and �1 will tend to the boundary and center of the soft core, respectively, and the soft
core itself will become hard gradually.

With the above topological analysis, we can construct a knot soliton by twisting an
Abrikosov-like vortex and connecting its two periodic ends. The topological stability of the
knot soliton is guaranteed by the topology π3(S

2) = Z. Due to the self-induced feature of B̃,
the Abrikosov-like vortex and the knot soliton can form in the TGS even in type-I limit [2].
According to equation (5), we can make an analysis which concludes that the magnetic field
always decays in the magnetic field penetration length of the SGS. As for the TGS, because
B̃ always disperses in the scale of ξ , the similar analysis only applies to the magnetic field
originated from C. This leads to the conclusion that because of the interaction of the magnetic
field itself, the size of the knot soliton is of order ξ(λ) in the type-I(II) limit.

Finally, we comment on the magnetic monopoles mentioned before. From the topological
structure of these monopoles, we find that they must be connected by the Abrikosov-like
vortices to form the composite solitons. Due to the energy consideration, the monopoles in
such a composite soliton are supposed to present in monopole–antimonopole pairs and tend to
annihilate. From this analysis, we conjecture that a monopole–antimonopole pair connected
by an Abrikosov-like vortex may act as an ‘instanton’, which could create and annihilate a
knot soliton, and therefore tunnel through the barrier between two topologically nonequivalent
field configurations. We will leave this subject to future studies.
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